| 1 | /* |
| 2 | * IBM Accurate Mathematical Library |
| 3 | * written by International Business Machines Corp. |
| 4 | * Copyright (C) 2001-2016 Free Software Foundation, Inc. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU Lesser General Public License as published by |
| 8 | * the Free Software Foundation; either version 2.1 of the License, or |
| 9 | * (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU Lesser General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU Lesser General Public License |
| 17 | * along with this program; if not, see <http://www.gnu.org/licenses/>. |
| 18 | */ |
| 19 | /*************************************************************************/ |
| 20 | /* MODULE_NAME:slowpow.c */ |
| 21 | /* */ |
| 22 | /* FUNCTION:slowpow */ |
| 23 | /* */ |
| 24 | /*FILES NEEDED:mpa.h */ |
| 25 | /* mpa.c mpexp.c mplog.c halfulp.c */ |
| 26 | /* */ |
| 27 | /* Given two IEEE double machine numbers y,x , routine computes the */ |
| 28 | /* correctly rounded (to nearest) value of x^y. Result calculated by */ |
| 29 | /* multiplication (in halfulp.c) or if result isn't accurate enough */ |
| 30 | /* then routine converts x and y into multi-precision doubles and */ |
| 31 | /* calls to mpexp routine */ |
| 32 | /*************************************************************************/ |
| 33 | |
| 34 | #include "mpa.h" |
| 35 | #include <math_private.h> |
| 36 | |
| 37 | #include <stap-probe.h> |
| 38 | |
| 39 | #ifndef SECTION |
| 40 | # define SECTION |
| 41 | #endif |
| 42 | |
| 43 | void __mpexp (mp_no *x, mp_no *y, int p); |
| 44 | void __mplog (mp_no *x, mp_no *y, int p); |
| 45 | double ulog (double); |
| 46 | double __halfulp (double x, double y); |
| 47 | |
| 48 | double |
| 49 | SECTION |
| 50 | __slowpow (double x, double y, double z) |
| 51 | { |
| 52 | double res, res1; |
| 53 | mp_no mpx, mpy, mpz, mpw, mpp, mpr, mpr1; |
| 54 | static const mp_no eps = {-3, {1.0, 4.0}}; |
| 55 | int p; |
| 56 | |
| 57 | /* __HALFULP returns -10 or X^Y. */ |
| 58 | res = __halfulp (x, y); |
| 59 | |
| 60 | /* Return if the result was computed by __HALFULP. */ |
| 61 | if (res >= 0) |
| 62 | return res; |
| 63 | |
| 64 | /* Compute pow as long double. This is currently only used by powerpc, where |
| 65 | one may get 106 bits of accuracy. */ |
| 66 | #ifdef USE_LONG_DOUBLE_FOR_MP |
| 67 | long double ldw, ldz, ldpp; |
| 68 | static const long double ldeps = 0x4.0p-96; |
| 69 | |
| 70 | ldz = __ieee754_logl ((long double) x); |
| 71 | ldw = (long double) y *ldz; |
| 72 | ldpp = __ieee754_expl (ldw); |
| 73 | res = (double) (ldpp + ldeps); |
| 74 | res1 = (double) (ldpp - ldeps); |
| 75 | |
| 76 | /* Return the result if it is accurate enough. */ |
| 77 | if (res == res1) |
| 78 | return res; |
| 79 | #endif |
| 80 | |
| 81 | /* Or else, calculate using multiple precision. P = 10 implies accuracy of |
| 82 | 240 bits accuracy, since MP_NO has a radix of 2^24. */ |
| 83 | p = 10; |
| 84 | __dbl_mp (x, &mpx, p); |
| 85 | __dbl_mp (y, &mpy, p); |
| 86 | __dbl_mp (z, &mpz, p); |
| 87 | |
| 88 | /* z = x ^ y |
| 89 | log (z) = y * log (x) |
| 90 | z = exp (y * log (x)) */ |
| 91 | __mplog (&mpx, &mpz, p); |
| 92 | __mul (&mpy, &mpz, &mpw, p); |
| 93 | __mpexp (&mpw, &mpp, p); |
| 94 | |
| 95 | /* Add and subtract EPS to ensure that the result remains unchanged, i.e. we |
| 96 | have last bit accuracy. */ |
| 97 | __add (&mpp, &eps, &mpr, p); |
| 98 | __mp_dbl (&mpr, &res, p); |
| 99 | __sub (&mpp, &eps, &mpr1, p); |
| 100 | __mp_dbl (&mpr1, &res1, p); |
| 101 | if (res == res1) |
| 102 | { |
| 103 | /* Track how often we get to the slow pow code plus |
| 104 | its input/output values. */ |
| 105 | LIBC_PROBE (slowpow_p10, 4, &x, &y, &z, &res); |
| 106 | return res; |
| 107 | } |
| 108 | |
| 109 | /* If we don't, then we repeat using a higher precision. 768 bits of |
| 110 | precision ought to be enough for anybody. */ |
| 111 | p = 32; |
| 112 | __dbl_mp (x, &mpx, p); |
| 113 | __dbl_mp (y, &mpy, p); |
| 114 | __dbl_mp (z, &mpz, p); |
| 115 | __mplog (&mpx, &mpz, p); |
| 116 | __mul (&mpy, &mpz, &mpw, p); |
| 117 | __mpexp (&mpw, &mpp, p); |
| 118 | __mp_dbl (&mpp, &res, p); |
| 119 | |
| 120 | /* Track how often we get to the uber-slow pow code plus |
| 121 | its input/output values. */ |
| 122 | LIBC_PROBE (slowpow_p32, 4, &x, &y, &z, &res); |
| 123 | |
| 124 | return res; |
| 125 | } |
| 126 | |