| 1 | /* |
| 2 | * IBM Accurate Mathematical Library |
| 3 | * written by International Business Machines Corp. |
| 4 | * Copyright (C) 2001-2016 Free Software Foundation, Inc. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU Lesser General Public License as published by |
| 8 | * the Free Software Foundation; either version 2.1 of the License, or |
| 9 | * (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU Lesser General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU Lesser General Public License |
| 17 | * along with this program; if not, see <http://www.gnu.org/licenses/>. |
| 18 | */ |
| 19 | /************************************************************************/ |
| 20 | /* */ |
| 21 | /* MODULE_NAME:mplog.c */ |
| 22 | /* */ |
| 23 | /* FUNCTIONS: mplog */ |
| 24 | /* */ |
| 25 | /* FILES NEEDED: endian.h mpa.h mplog.h */ |
| 26 | /* mpexp.c */ |
| 27 | /* */ |
| 28 | /* Multi-Precision logarithm function subroutine (for precision p >= 4, */ |
| 29 | /* 2**(-1024) < x < 2**1024) and x is outside of the interval */ |
| 30 | /* [1-2**(-54),1+2**(-54)]. Upon entry, x should be set to the */ |
| 31 | /* multi-precision value of the input and y should be set into a multi- */ |
| 32 | /* precision value of an approximation of log(x) with relative error */ |
| 33 | /* bound of at most 2**(-52). The routine improves the accuracy of y. */ |
| 34 | /* */ |
| 35 | /************************************************************************/ |
| 36 | #include "endian.h" |
| 37 | #include "mpa.h" |
| 38 | |
| 39 | void |
| 40 | __mplog (mp_no *x, mp_no *y, int p) |
| 41 | { |
| 42 | int i, m; |
| 43 | static const int mp[33] = |
| 44 | { |
| 45 | 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, |
| 46 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 |
| 47 | }; |
| 48 | mp_no mpt1, mpt2; |
| 49 | |
| 50 | /* Choose m. */ |
| 51 | m = mp[p]; |
| 52 | |
| 53 | /* Perform m newton iterations to solve for y: exp(y) - x = 0. The |
| 54 | iterations formula is: y(n + 1) = y(n) + (x * exp(-y(n)) - 1). */ |
| 55 | __cpy (y, &mpt1, p); |
| 56 | for (i = 0; i < m; i++) |
| 57 | { |
| 58 | mpt1.d[0] = -mpt1.d[0]; |
| 59 | __mpexp (&mpt1, &mpt2, p); |
| 60 | __mul (x, &mpt2, &mpt1, p); |
| 61 | __sub (&mpt1, &__mpone, &mpt2, p); |
| 62 | __add (y, &mpt2, &mpt1, p); |
| 63 | __cpy (&mpt1, y, p); |
| 64 | } |
| 65 | } |
| 66 | |