| 1 | /* |
| 2 | * IBM Accurate Mathematical Library |
| 3 | * written by International Business Machines Corp. |
| 4 | * Copyright (C) 2001-2016 Free Software Foundation, Inc. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU Lesser General Public License as published by |
| 8 | * the Free Software Foundation; either version 2.1 of the License, or |
| 9 | * (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU Lesser General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU Lesser General Public License |
| 17 | * along with this program; if not, see <http://www.gnu.org/licenses/>. |
| 18 | */ |
| 19 | /***************************************************************************/ |
| 20 | /* MODULE_NAME:uexp.c */ |
| 21 | /* */ |
| 22 | /* FUNCTION:uexp */ |
| 23 | /* exp1 */ |
| 24 | /* */ |
| 25 | /* FILES NEEDED:dla.h endian.h mpa.h mydefs.h uexp.h */ |
| 26 | /* mpa.c mpexp.x slowexp.c */ |
| 27 | /* */ |
| 28 | /* An ultimate exp routine. Given an IEEE double machine number x */ |
| 29 | /* it computes the correctly rounded (to nearest) value of e^x */ |
| 30 | /* Assumption: Machine arithmetic operations are performed in */ |
| 31 | /* round to nearest mode of IEEE 754 standard. */ |
| 32 | /* */ |
| 33 | /***************************************************************************/ |
| 34 | |
| 35 | #include <math.h> |
| 36 | #include "endian.h" |
| 37 | #include "uexp.h" |
| 38 | #include "mydefs.h" |
| 39 | #include "MathLib.h" |
| 40 | #include "uexp.tbl" |
| 41 | #include <math_private.h> |
| 42 | #include <fenv.h> |
| 43 | #include <float.h> |
| 44 | |
| 45 | #ifndef SECTION |
| 46 | # define SECTION |
| 47 | #endif |
| 48 | |
| 49 | double __slowexp (double); |
| 50 | |
| 51 | /* An ultimate exp routine. Given an IEEE double machine number x it computes |
| 52 | the correctly rounded (to nearest) value of e^x. */ |
| 53 | double |
| 54 | SECTION |
| 55 | __ieee754_exp (double x) |
| 56 | { |
| 57 | double bexp, t, eps, del, base, y, al, bet, res, rem, cor; |
| 58 | mynumber junk1, junk2, binexp = {{0, 0}}; |
| 59 | int4 i, j, m, n, ex; |
| 60 | double retval; |
| 61 | |
| 62 | { |
| 63 | SET_RESTORE_ROUND (FE_TONEAREST); |
| 64 | |
| 65 | junk1.x = x; |
| 66 | m = junk1.i[HIGH_HALF]; |
| 67 | n = m & hugeint; |
| 68 | |
| 69 | if (n > smallint && n < bigint) |
| 70 | { |
| 71 | y = x * log2e.x + three51.x; |
| 72 | bexp = y - three51.x; /* multiply the result by 2**bexp */ |
| 73 | |
| 74 | junk1.x = y; |
| 75 | |
| 76 | eps = bexp * ln_two2.x; /* x = bexp*ln(2) + t - eps */ |
| 77 | t = x - bexp * ln_two1.x; |
| 78 | |
| 79 | y = t + three33.x; |
| 80 | base = y - three33.x; /* t rounded to a multiple of 2**-18 */ |
| 81 | junk2.x = y; |
| 82 | del = (t - base) - eps; /* x = bexp*ln(2) + base + del */ |
| 83 | eps = del + del * del * (p3.x * del + p2.x); |
| 84 | |
| 85 | binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 1023) << 20; |
| 86 | |
| 87 | i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356; |
| 88 | j = (junk2.i[LOW_HALF] & 511) << 1; |
| 89 | |
| 90 | al = coar.x[i] * fine.x[j]; |
| 91 | bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j]) |
| 92 | + coar.x[i + 1] * fine.x[j + 1]); |
| 93 | |
| 94 | rem = (bet + bet * eps) + al * eps; |
| 95 | res = al + rem; |
| 96 | cor = (al - res) + rem; |
| 97 | if (res == (res + cor * err_0)) |
| 98 | { |
| 99 | retval = res * binexp.x; |
| 100 | goto ret; |
| 101 | } |
| 102 | else |
| 103 | { |
| 104 | retval = __slowexp (x); |
| 105 | goto ret; |
| 106 | } /*if error is over bound */ |
| 107 | } |
| 108 | |
| 109 | if (n <= smallint) |
| 110 | { |
| 111 | retval = 1.0; |
| 112 | goto ret; |
| 113 | } |
| 114 | |
| 115 | if (n >= badint) |
| 116 | { |
| 117 | if (n > infint) |
| 118 | { |
| 119 | retval = x + x; |
| 120 | goto ret; |
| 121 | } /* x is NaN */ |
| 122 | if (n < infint) |
| 123 | { |
| 124 | if (x > 0) |
| 125 | goto ret_huge; |
| 126 | else |
| 127 | goto ret_tiny; |
| 128 | } |
| 129 | /* x is finite, cause either overflow or underflow */ |
| 130 | if (junk1.i[LOW_HALF] != 0) |
| 131 | { |
| 132 | retval = x + x; |
| 133 | goto ret; |
| 134 | } /* x is NaN */ |
| 135 | retval = (x > 0) ? inf.x : zero; /* |x| = inf; return either inf or 0 */ |
| 136 | goto ret; |
| 137 | } |
| 138 | |
| 139 | y = x * log2e.x + three51.x; |
| 140 | bexp = y - three51.x; |
| 141 | junk1.x = y; |
| 142 | eps = bexp * ln_two2.x; |
| 143 | t = x - bexp * ln_two1.x; |
| 144 | y = t + three33.x; |
| 145 | base = y - three33.x; |
| 146 | junk2.x = y; |
| 147 | del = (t - base) - eps; |
| 148 | eps = del + del * del * (p3.x * del + p2.x); |
| 149 | i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356; |
| 150 | j = (junk2.i[LOW_HALF] & 511) << 1; |
| 151 | al = coar.x[i] * fine.x[j]; |
| 152 | bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j]) |
| 153 | + coar.x[i + 1] * fine.x[j + 1]); |
| 154 | rem = (bet + bet * eps) + al * eps; |
| 155 | res = al + rem; |
| 156 | cor = (al - res) + rem; |
| 157 | if (m >> 31) |
| 158 | { |
| 159 | ex = junk1.i[LOW_HALF]; |
| 160 | if (res < 1.0) |
| 161 | { |
| 162 | res += res; |
| 163 | cor += cor; |
| 164 | ex -= 1; |
| 165 | } |
| 166 | if (ex >= -1022) |
| 167 | { |
| 168 | binexp.i[HIGH_HALF] = (1023 + ex) << 20; |
| 169 | if (res == (res + cor * err_0)) |
| 170 | { |
| 171 | retval = res * binexp.x; |
| 172 | goto ret; |
| 173 | } |
| 174 | else |
| 175 | { |
| 176 | retval = __slowexp (x); |
| 177 | goto check_uflow_ret; |
| 178 | } /*if error is over bound */ |
| 179 | } |
| 180 | ex = -(1022 + ex); |
| 181 | binexp.i[HIGH_HALF] = (1023 - ex) << 20; |
| 182 | res *= binexp.x; |
| 183 | cor *= binexp.x; |
| 184 | eps = 1.0000000001 + err_0 * binexp.x; |
| 185 | t = 1.0 + res; |
| 186 | y = ((1.0 - t) + res) + cor; |
| 187 | res = t + y; |
| 188 | cor = (t - res) + y; |
| 189 | if (res == (res + eps * cor)) |
| 190 | { |
| 191 | binexp.i[HIGH_HALF] = 0x00100000; |
| 192 | retval = (res - 1.0) * binexp.x; |
| 193 | goto check_uflow_ret; |
| 194 | } |
| 195 | else |
| 196 | { |
| 197 | retval = __slowexp (x); |
| 198 | goto check_uflow_ret; |
| 199 | } /* if error is over bound */ |
| 200 | check_uflow_ret: |
| 201 | if (retval < DBL_MIN) |
| 202 | { |
| 203 | double force_underflow = tiny * tiny; |
| 204 | math_force_eval (force_underflow); |
| 205 | } |
| 206 | if (retval == 0) |
| 207 | goto ret_tiny; |
| 208 | goto ret; |
| 209 | } |
| 210 | else |
| 211 | { |
| 212 | binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 767) << 20; |
| 213 | if (res == (res + cor * err_0)) |
| 214 | retval = res * binexp.x * t256.x; |
| 215 | else |
| 216 | retval = __slowexp (x); |
| 217 | if (isinf (retval)) |
| 218 | goto ret_huge; |
| 219 | else |
| 220 | goto ret; |
| 221 | } |
| 222 | } |
| 223 | ret: |
| 224 | return retval; |
| 225 | |
| 226 | ret_huge: |
| 227 | return hhuge * hhuge; |
| 228 | |
| 229 | ret_tiny: |
| 230 | return tiny * tiny; |
| 231 | } |
| 232 | #ifndef __ieee754_exp |
| 233 | strong_alias (__ieee754_exp, __exp_finite) |
| 234 | #endif |
| 235 | |
| 236 | /* Compute e^(x+xx). The routine also receives bound of error of previous |
| 237 | calculation. If after computing exp the error exceeds the allowed bounds, |
| 238 | the routine returns a non-positive number. Otherwise it returns the |
| 239 | computed result, which is always positive. */ |
| 240 | double |
| 241 | SECTION |
| 242 | __exp1 (double x, double xx, double error) |
| 243 | { |
| 244 | double bexp, t, eps, del, base, y, al, bet, res, rem, cor; |
| 245 | mynumber junk1, junk2, binexp = {{0, 0}}; |
| 246 | int4 i, j, m, n, ex; |
| 247 | |
| 248 | junk1.x = x; |
| 249 | m = junk1.i[HIGH_HALF]; |
| 250 | n = m & hugeint; /* no sign */ |
| 251 | |
| 252 | if (n > smallint && n < bigint) |
| 253 | { |
| 254 | y = x * log2e.x + three51.x; |
| 255 | bexp = y - three51.x; /* multiply the result by 2**bexp */ |
| 256 | |
| 257 | junk1.x = y; |
| 258 | |
| 259 | eps = bexp * ln_two2.x; /* x = bexp*ln(2) + t - eps */ |
| 260 | t = x - bexp * ln_two1.x; |
| 261 | |
| 262 | y = t + three33.x; |
| 263 | base = y - three33.x; /* t rounded to a multiple of 2**-18 */ |
| 264 | junk2.x = y; |
| 265 | del = (t - base) + (xx - eps); /* x = bexp*ln(2) + base + del */ |
| 266 | eps = del + del * del * (p3.x * del + p2.x); |
| 267 | |
| 268 | binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 1023) << 20; |
| 269 | |
| 270 | i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356; |
| 271 | j = (junk2.i[LOW_HALF] & 511) << 1; |
| 272 | |
| 273 | al = coar.x[i] * fine.x[j]; |
| 274 | bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j]) |
| 275 | + coar.x[i + 1] * fine.x[j + 1]); |
| 276 | |
| 277 | rem = (bet + bet * eps) + al * eps; |
| 278 | res = al + rem; |
| 279 | cor = (al - res) + rem; |
| 280 | if (res == (res + cor * (1.0 + error + err_1))) |
| 281 | return res * binexp.x; |
| 282 | else |
| 283 | return -10.0; |
| 284 | } |
| 285 | |
| 286 | if (n <= smallint) |
| 287 | return 1.0; /* if x->0 e^x=1 */ |
| 288 | |
| 289 | if (n >= badint) |
| 290 | { |
| 291 | if (n > infint) |
| 292 | return (zero / zero); /* x is NaN, return invalid */ |
| 293 | if (n < infint) |
| 294 | return ((x > 0) ? (hhuge * hhuge) : (tiny * tiny)); |
| 295 | /* x is finite, cause either overflow or underflow */ |
| 296 | if (junk1.i[LOW_HALF] != 0) |
| 297 | return (zero / zero); /* x is NaN */ |
| 298 | return ((x > 0) ? inf.x : zero); /* |x| = inf; return either inf or 0 */ |
| 299 | } |
| 300 | |
| 301 | y = x * log2e.x + three51.x; |
| 302 | bexp = y - three51.x; |
| 303 | junk1.x = y; |
| 304 | eps = bexp * ln_two2.x; |
| 305 | t = x - bexp * ln_two1.x; |
| 306 | y = t + three33.x; |
| 307 | base = y - three33.x; |
| 308 | junk2.x = y; |
| 309 | del = (t - base) + (xx - eps); |
| 310 | eps = del + del * del * (p3.x * del + p2.x); |
| 311 | i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356; |
| 312 | j = (junk2.i[LOW_HALF] & 511) << 1; |
| 313 | al = coar.x[i] * fine.x[j]; |
| 314 | bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j]) |
| 315 | + coar.x[i + 1] * fine.x[j + 1]); |
| 316 | rem = (bet + bet * eps) + al * eps; |
| 317 | res = al + rem; |
| 318 | cor = (al - res) + rem; |
| 319 | if (m >> 31) |
| 320 | { |
| 321 | ex = junk1.i[LOW_HALF]; |
| 322 | if (res < 1.0) |
| 323 | { |
| 324 | res += res; |
| 325 | cor += cor; |
| 326 | ex -= 1; |
| 327 | } |
| 328 | if (ex >= -1022) |
| 329 | { |
| 330 | binexp.i[HIGH_HALF] = (1023 + ex) << 20; |
| 331 | if (res == (res + cor * (1.0 + error + err_1))) |
| 332 | return res * binexp.x; |
| 333 | else |
| 334 | return -10.0; |
| 335 | } |
| 336 | ex = -(1022 + ex); |
| 337 | binexp.i[HIGH_HALF] = (1023 - ex) << 20; |
| 338 | res *= binexp.x; |
| 339 | cor *= binexp.x; |
| 340 | eps = 1.00000000001 + (error + err_1) * binexp.x; |
| 341 | t = 1.0 + res; |
| 342 | y = ((1.0 - t) + res) + cor; |
| 343 | res = t + y; |
| 344 | cor = (t - res) + y; |
| 345 | if (res == (res + eps * cor)) |
| 346 | { |
| 347 | binexp.i[HIGH_HALF] = 0x00100000; |
| 348 | return (res - 1.0) * binexp.x; |
| 349 | } |
| 350 | else |
| 351 | return -10.0; |
| 352 | } |
| 353 | else |
| 354 | { |
| 355 | binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 767) << 20; |
| 356 | if (res == (res + cor * (1.0 + error + err_1))) |
| 357 | return res * binexp.x * t256.x; |
| 358 | else |
| 359 | return -10.0; |
| 360 | } |
| 361 | } |
| 362 | |