1 | /* Floating point output for `printf'. |
2 | Copyright (C) 1995-2016 Free Software Foundation, Inc. |
3 | |
4 | This file is part of the GNU C Library. |
5 | Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995. |
6 | |
7 | The GNU C Library is free software; you can redistribute it and/or |
8 | modify it under the terms of the GNU Lesser General Public |
9 | License as published by the Free Software Foundation; either |
10 | version 2.1 of the License, or (at your option) any later version. |
11 | |
12 | The GNU C Library is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
15 | Lesser General Public License for more details. |
16 | |
17 | You should have received a copy of the GNU Lesser General Public |
18 | License along with the GNU C Library; if not, see |
19 | <http://www.gnu.org/licenses/>. */ |
20 | |
21 | /* The gmp headers need some configuration frobs. */ |
22 | #define HAVE_ALLOCA 1 |
23 | |
24 | #include <libioP.h> |
25 | #include <alloca.h> |
26 | #include <ctype.h> |
27 | #include <float.h> |
28 | #include <gmp-mparam.h> |
29 | #include <gmp.h> |
30 | #include <ieee754.h> |
31 | #include <stdlib/gmp-impl.h> |
32 | #include <stdlib/longlong.h> |
33 | #include <stdlib/fpioconst.h> |
34 | #include <locale/localeinfo.h> |
35 | #include <limits.h> |
36 | #include <math.h> |
37 | #include <printf.h> |
38 | #include <string.h> |
39 | #include <unistd.h> |
40 | #include <stdlib.h> |
41 | #include <wchar.h> |
42 | #include <stdbool.h> |
43 | #include <rounding-mode.h> |
44 | |
45 | #ifdef COMPILE_WPRINTF |
46 | # define CHAR_T wchar_t |
47 | #else |
48 | # define CHAR_T char |
49 | #endif |
50 | |
51 | #include "_i18n_number.h" |
52 | |
53 | #ifndef NDEBUG |
54 | # define NDEBUG /* Undefine this for debugging assertions. */ |
55 | #endif |
56 | #include <assert.h> |
57 | |
58 | /* This defines make it possible to use the same code for GNU C library and |
59 | the GNU I/O library. */ |
60 | #define PUT(f, s, n) _IO_sputn (f, s, n) |
61 | #define PAD(f, c, n) (wide ? _IO_wpadn (f, c, n) : _IO_padn (f, c, n)) |
62 | /* We use this file GNU C library and GNU I/O library. So make |
63 | names equal. */ |
64 | #undef putc |
65 | #define putc(c, f) (wide \ |
66 | ? (int)_IO_putwc_unlocked (c, f) : _IO_putc_unlocked (c, f)) |
67 | #define size_t _IO_size_t |
68 | #define FILE _IO_FILE |
69 | |
70 | /* Macros for doing the actual output. */ |
71 | |
72 | #define outchar(ch) \ |
73 | do \ |
74 | { \ |
75 | const int outc = (ch); \ |
76 | if (putc (outc, fp) == EOF) \ |
77 | { \ |
78 | if (buffer_malloced) \ |
79 | free (wbuffer); \ |
80 | return -1; \ |
81 | } \ |
82 | ++done; \ |
83 | } while (0) |
84 | |
85 | #define PRINT(ptr, wptr, len) \ |
86 | do \ |
87 | { \ |
88 | size_t outlen = (len); \ |
89 | if (len > 20) \ |
90 | { \ |
91 | if (PUT (fp, wide ? (const char *) wptr : ptr, outlen) != outlen) \ |
92 | { \ |
93 | if (buffer_malloced) \ |
94 | free (wbuffer); \ |
95 | return -1; \ |
96 | } \ |
97 | ptr += outlen; \ |
98 | done += outlen; \ |
99 | } \ |
100 | else \ |
101 | { \ |
102 | if (wide) \ |
103 | while (outlen-- > 0) \ |
104 | outchar (*wptr++); \ |
105 | else \ |
106 | while (outlen-- > 0) \ |
107 | outchar (*ptr++); \ |
108 | } \ |
109 | } while (0) |
110 | |
111 | #define PADN(ch, len) \ |
112 | do \ |
113 | { \ |
114 | if (PAD (fp, ch, len) != len) \ |
115 | { \ |
116 | if (buffer_malloced) \ |
117 | free (wbuffer); \ |
118 | return -1; \ |
119 | } \ |
120 | done += len; \ |
121 | } \ |
122 | while (0) |
123 | |
124 | /* We use the GNU MP library to handle large numbers. |
125 | |
126 | An MP variable occupies a varying number of entries in its array. We keep |
127 | track of this number for efficiency reasons. Otherwise we would always |
128 | have to process the whole array. */ |
129 | #define MPN_VAR(name) mp_limb_t *name; mp_size_t name##size |
130 | |
131 | #define MPN_ASSIGN(dst,src) \ |
132 | memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t)) |
133 | #define MPN_GE(u,v) \ |
134 | (u##size > v##size || (u##size == v##size && __mpn_cmp (u, v, u##size) >= 0)) |
135 | |
136 | extern mp_size_t (mp_ptr res_ptr, mp_size_t size, |
137 | int *expt, int *is_neg, |
138 | double value); |
139 | extern mp_size_t (mp_ptr res_ptr, mp_size_t size, |
140 | int *expt, int *is_neg, |
141 | long double value); |
142 | extern unsigned int __guess_grouping (unsigned int intdig_max, |
143 | const char *grouping); |
144 | |
145 | |
146 | static wchar_t *group_number (wchar_t *buf, wchar_t *bufend, |
147 | unsigned int intdig_no, const char *grouping, |
148 | wchar_t thousands_sep, int ngroups) |
149 | internal_function; |
150 | |
151 | struct hack_digit_param |
152 | { |
153 | /* Sign of the exponent. */ |
154 | int expsign; |
155 | /* The type of output format that will be used: 'e'/'E' or 'f'. */ |
156 | int type; |
157 | /* and the exponent. */ |
158 | int exponent; |
159 | /* The fraction of the floting-point value in question */ |
160 | MPN_VAR(frac); |
161 | /* Scaling factor. */ |
162 | MPN_VAR(scale); |
163 | /* Temporary bignum value. */ |
164 | MPN_VAR(tmp); |
165 | }; |
166 | |
167 | static wchar_t |
168 | hack_digit (struct hack_digit_param *p) |
169 | { |
170 | mp_limb_t hi; |
171 | |
172 | if (p->expsign != 0 && p->type == 'f' && p->exponent-- > 0) |
173 | hi = 0; |
174 | else if (p->scalesize == 0) |
175 | { |
176 | hi = p->frac[p->fracsize - 1]; |
177 | p->frac[p->fracsize - 1] = __mpn_mul_1 (p->frac, p->frac, |
178 | p->fracsize - 1, 10); |
179 | } |
180 | else |
181 | { |
182 | if (p->fracsize < p->scalesize) |
183 | hi = 0; |
184 | else |
185 | { |
186 | hi = mpn_divmod (p->tmp, p->frac, p->fracsize, |
187 | p->scale, p->scalesize); |
188 | p->tmp[p->fracsize - p->scalesize] = hi; |
189 | hi = p->tmp[0]; |
190 | |
191 | p->fracsize = p->scalesize; |
192 | while (p->fracsize != 0 && p->frac[p->fracsize - 1] == 0) |
193 | --p->fracsize; |
194 | if (p->fracsize == 0) |
195 | { |
196 | /* We're not prepared for an mpn variable with zero |
197 | limbs. */ |
198 | p->fracsize = 1; |
199 | return L'0' + hi; |
200 | } |
201 | } |
202 | |
203 | mp_limb_t _cy = __mpn_mul_1 (p->frac, p->frac, p->fracsize, 10); |
204 | if (_cy != 0) |
205 | p->frac[p->fracsize++] = _cy; |
206 | } |
207 | |
208 | return L'0' + hi; |
209 | } |
210 | |
211 | int |
212 | ___printf_fp (FILE *fp, |
213 | const struct printf_info *info, |
214 | const void *const *args) |
215 | { |
216 | /* The floating-point value to output. */ |
217 | union |
218 | { |
219 | double dbl; |
220 | __long_double_t ldbl; |
221 | } |
222 | fpnum; |
223 | |
224 | /* Locale-dependent representation of decimal point. */ |
225 | const char *decimal; |
226 | wchar_t decimalwc; |
227 | |
228 | /* Locale-dependent thousands separator and grouping specification. */ |
229 | const char *thousands_sep = NULL; |
230 | wchar_t thousands_sepwc = 0; |
231 | const char *grouping; |
232 | |
233 | /* "NaN" or "Inf" for the special cases. */ |
234 | const char *special = NULL; |
235 | const wchar_t *wspecial = NULL; |
236 | |
237 | /* We need just a few limbs for the input before shifting to the right |
238 | position. */ |
239 | mp_limb_t fp_input[(LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB]; |
240 | /* We need to shift the contents of fp_input by this amount of bits. */ |
241 | int to_shift = 0; |
242 | |
243 | struct hack_digit_param p; |
244 | /* Sign of float number. */ |
245 | int is_neg = 0; |
246 | |
247 | /* Counter for number of written characters. */ |
248 | int done = 0; |
249 | |
250 | /* General helper (carry limb). */ |
251 | mp_limb_t cy; |
252 | |
253 | /* Nonzero if this is output on a wide character stream. */ |
254 | int wide = info->wide; |
255 | |
256 | /* Buffer in which we produce the output. */ |
257 | wchar_t *wbuffer = NULL; |
258 | /* Flag whether wbuffer is malloc'ed or not. */ |
259 | int buffer_malloced = 0; |
260 | |
261 | p.expsign = 0; |
262 | |
263 | /* Figure out the decimal point character. */ |
264 | if (info->extra == 0) |
265 | { |
266 | decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT); |
267 | decimalwc = _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_DECIMAL_POINT_WC); |
268 | } |
269 | else |
270 | { |
271 | decimal = _NL_CURRENT (LC_MONETARY, MON_DECIMAL_POINT); |
272 | if (*decimal == '\0') |
273 | decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT); |
274 | decimalwc = _NL_CURRENT_WORD (LC_MONETARY, |
275 | _NL_MONETARY_DECIMAL_POINT_WC); |
276 | if (decimalwc == L'\0') |
277 | decimalwc = _NL_CURRENT_WORD (LC_NUMERIC, |
278 | _NL_NUMERIC_DECIMAL_POINT_WC); |
279 | } |
280 | /* The decimal point character must not be zero. */ |
281 | assert (*decimal != '\0'); |
282 | assert (decimalwc != L'\0'); |
283 | |
284 | if (info->group) |
285 | { |
286 | if (info->extra == 0) |
287 | grouping = _NL_CURRENT (LC_NUMERIC, GROUPING); |
288 | else |
289 | grouping = _NL_CURRENT (LC_MONETARY, MON_GROUPING); |
290 | |
291 | if (*grouping <= 0 || *grouping == CHAR_MAX) |
292 | grouping = NULL; |
293 | else |
294 | { |
295 | /* Figure out the thousands separator character. */ |
296 | if (wide) |
297 | { |
298 | if (info->extra == 0) |
299 | thousands_sepwc = |
300 | _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_THOUSANDS_SEP_WC); |
301 | else |
302 | thousands_sepwc = |
303 | _NL_CURRENT_WORD (LC_MONETARY, |
304 | _NL_MONETARY_THOUSANDS_SEP_WC); |
305 | } |
306 | else |
307 | { |
308 | if (info->extra == 0) |
309 | thousands_sep = _NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP); |
310 | else |
311 | thousands_sep = _NL_CURRENT (LC_MONETARY, MON_THOUSANDS_SEP); |
312 | } |
313 | |
314 | if ((wide && thousands_sepwc == L'\0') |
315 | || (! wide && *thousands_sep == '\0')) |
316 | grouping = NULL; |
317 | else if (thousands_sepwc == L'\0') |
318 | /* If we are printing multibyte characters and there is a |
319 | multibyte representation for the thousands separator, |
320 | we must ensure the wide character thousands separator |
321 | is available, even if it is fake. */ |
322 | thousands_sepwc = 0xfffffffe; |
323 | } |
324 | } |
325 | else |
326 | grouping = NULL; |
327 | |
328 | /* Fetch the argument value. */ |
329 | #ifndef __NO_LONG_DOUBLE_MATH |
330 | if (info->is_long_double && sizeof (long double) > sizeof (double)) |
331 | { |
332 | fpnum.ldbl = *(const long double *) args[0]; |
333 | |
334 | /* Check for special values: not a number or infinity. */ |
335 | if (isnan (fpnum.ldbl)) |
336 | { |
337 | is_neg = signbit (fpnum.ldbl); |
338 | if (isupper (info->spec)) |
339 | { |
340 | special = "NAN" ; |
341 | wspecial = L"NAN" ; |
342 | } |
343 | else |
344 | { |
345 | special = "nan" ; |
346 | wspecial = L"nan" ; |
347 | } |
348 | } |
349 | else if (isinf (fpnum.ldbl)) |
350 | { |
351 | is_neg = signbit (fpnum.ldbl); |
352 | if (isupper (info->spec)) |
353 | { |
354 | special = "INF" ; |
355 | wspecial = L"INF" ; |
356 | } |
357 | else |
358 | { |
359 | special = "inf" ; |
360 | wspecial = L"inf" ; |
361 | } |
362 | } |
363 | else |
364 | { |
365 | p.fracsize = __mpn_extract_long_double (fp_input, |
366 | (sizeof (fp_input) / |
367 | sizeof (fp_input[0])), |
368 | &p.exponent, &is_neg, |
369 | fpnum.ldbl); |
370 | to_shift = 1 + p.fracsize * BITS_PER_MP_LIMB - LDBL_MANT_DIG; |
371 | } |
372 | } |
373 | else |
374 | #endif /* no long double */ |
375 | { |
376 | fpnum.dbl = *(const double *) args[0]; |
377 | |
378 | /* Check for special values: not a number or infinity. */ |
379 | if (isnan (fpnum.dbl)) |
380 | { |
381 | is_neg = signbit (fpnum.dbl); |
382 | if (isupper (info->spec)) |
383 | { |
384 | special = "NAN" ; |
385 | wspecial = L"NAN" ; |
386 | } |
387 | else |
388 | { |
389 | special = "nan" ; |
390 | wspecial = L"nan" ; |
391 | } |
392 | } |
393 | else if (isinf (fpnum.dbl)) |
394 | { |
395 | is_neg = signbit (fpnum.dbl); |
396 | if (isupper (info->spec)) |
397 | { |
398 | special = "INF" ; |
399 | wspecial = L"INF" ; |
400 | } |
401 | else |
402 | { |
403 | special = "inf" ; |
404 | wspecial = L"inf" ; |
405 | } |
406 | } |
407 | else |
408 | { |
409 | p.fracsize = __mpn_extract_double (fp_input, |
410 | (sizeof (fp_input) |
411 | / sizeof (fp_input[0])), |
412 | &p.exponent, &is_neg, fpnum.dbl); |
413 | to_shift = 1 + p.fracsize * BITS_PER_MP_LIMB - DBL_MANT_DIG; |
414 | } |
415 | } |
416 | |
417 | if (special) |
418 | { |
419 | int width = info->width; |
420 | |
421 | if (is_neg || info->showsign || info->space) |
422 | --width; |
423 | width -= 3; |
424 | |
425 | if (!info->left && width > 0) |
426 | PADN (' ', width); |
427 | |
428 | if (is_neg) |
429 | outchar ('-'); |
430 | else if (info->showsign) |
431 | outchar ('+'); |
432 | else if (info->space) |
433 | outchar (' '); |
434 | |
435 | PRINT (special, wspecial, 3); |
436 | |
437 | if (info->left && width > 0) |
438 | PADN (' ', width); |
439 | |
440 | return done; |
441 | } |
442 | |
443 | |
444 | /* We need three multiprecision variables. Now that we have the p.exponent |
445 | of the number we can allocate the needed memory. It would be more |
446 | efficient to use variables of the fixed maximum size but because this |
447 | would be really big it could lead to memory problems. */ |
448 | { |
449 | mp_size_t bignum_size = ((abs (p.exponent) + BITS_PER_MP_LIMB - 1) |
450 | / BITS_PER_MP_LIMB |
451 | + (LDBL_MANT_DIG / BITS_PER_MP_LIMB > 2 ? 8 : 4)) |
452 | * sizeof (mp_limb_t); |
453 | p.frac = (mp_limb_t *) alloca (bignum_size); |
454 | p.tmp = (mp_limb_t *) alloca (bignum_size); |
455 | p.scale = (mp_limb_t *) alloca (bignum_size); |
456 | } |
457 | |
458 | /* We now have to distinguish between numbers with positive and negative |
459 | exponents because the method used for the one is not applicable/efficient |
460 | for the other. */ |
461 | p.scalesize = 0; |
462 | if (p.exponent > 2) |
463 | { |
464 | /* |FP| >= 8.0. */ |
465 | int scaleexpo = 0; |
466 | int explog = LDBL_MAX_10_EXP_LOG; |
467 | int exp10 = 0; |
468 | const struct mp_power *powers = &_fpioconst_pow10[explog + 1]; |
469 | int cnt_h, cnt_l, i; |
470 | |
471 | if ((p.exponent + to_shift) % BITS_PER_MP_LIMB == 0) |
472 | { |
473 | MPN_COPY_DECR (p.frac + (p.exponent + to_shift) / BITS_PER_MP_LIMB, |
474 | fp_input, p.fracsize); |
475 | p.fracsize += (p.exponent + to_shift) / BITS_PER_MP_LIMB; |
476 | } |
477 | else |
478 | { |
479 | cy = __mpn_lshift (p.frac + |
480 | (p.exponent + to_shift) / BITS_PER_MP_LIMB, |
481 | fp_input, p.fracsize, |
482 | (p.exponent + to_shift) % BITS_PER_MP_LIMB); |
483 | p.fracsize += (p.exponent + to_shift) / BITS_PER_MP_LIMB; |
484 | if (cy) |
485 | p.frac[p.fracsize++] = cy; |
486 | } |
487 | MPN_ZERO (p.frac, (p.exponent + to_shift) / BITS_PER_MP_LIMB); |
488 | |
489 | assert (powers > &_fpioconst_pow10[0]); |
490 | do |
491 | { |
492 | --powers; |
493 | |
494 | /* The number of the product of two binary numbers with n and m |
495 | bits respectively has m+n or m+n-1 bits. */ |
496 | if (p.exponent >= scaleexpo + powers->p_expo - 1) |
497 | { |
498 | if (p.scalesize == 0) |
499 | { |
500 | #ifndef __NO_LONG_DOUBLE_MATH |
501 | if (LDBL_MANT_DIG > _FPIO_CONST_OFFSET * BITS_PER_MP_LIMB |
502 | && info->is_long_double) |
503 | { |
504 | #define _FPIO_CONST_SHIFT \ |
505 | (((LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB) \ |
506 | - _FPIO_CONST_OFFSET) |
507 | /* 64bit const offset is not enough for |
508 | IEEE quad long double. */ |
509 | p.tmpsize = powers->arraysize + _FPIO_CONST_SHIFT; |
510 | memcpy (p.tmp + _FPIO_CONST_SHIFT, |
511 | &__tens[powers->arrayoff], |
512 | p.tmpsize * sizeof (mp_limb_t)); |
513 | MPN_ZERO (p.tmp, _FPIO_CONST_SHIFT); |
514 | /* Adjust p.exponent, as scaleexpo will be this much |
515 | bigger too. */ |
516 | p.exponent += _FPIO_CONST_SHIFT * BITS_PER_MP_LIMB; |
517 | } |
518 | else |
519 | #endif |
520 | { |
521 | p.tmpsize = powers->arraysize; |
522 | memcpy (p.tmp, &__tens[powers->arrayoff], |
523 | p.tmpsize * sizeof (mp_limb_t)); |
524 | } |
525 | } |
526 | else |
527 | { |
528 | cy = __mpn_mul (p.tmp, p.scale, p.scalesize, |
529 | &__tens[powers->arrayoff |
530 | + _FPIO_CONST_OFFSET], |
531 | powers->arraysize - _FPIO_CONST_OFFSET); |
532 | p.tmpsize = p.scalesize + |
533 | powers->arraysize - _FPIO_CONST_OFFSET; |
534 | if (cy == 0) |
535 | --p.tmpsize; |
536 | } |
537 | |
538 | if (MPN_GE (p.frac, p.tmp)) |
539 | { |
540 | int cnt; |
541 | MPN_ASSIGN (p.scale, p.tmp); |
542 | count_leading_zeros (cnt, p.scale[p.scalesize - 1]); |
543 | scaleexpo = (p.scalesize - 2) * BITS_PER_MP_LIMB - cnt - 1; |
544 | exp10 |= 1 << explog; |
545 | } |
546 | } |
547 | --explog; |
548 | } |
549 | while (powers > &_fpioconst_pow10[0]); |
550 | p.exponent = exp10; |
551 | |
552 | /* Optimize number representations. We want to represent the numbers |
553 | with the lowest number of bytes possible without losing any |
554 | bytes. Also the highest bit in the scaling factor has to be set |
555 | (this is a requirement of the MPN division routines). */ |
556 | if (p.scalesize > 0) |
557 | { |
558 | /* Determine minimum number of zero bits at the end of |
559 | both numbers. */ |
560 | for (i = 0; p.scale[i] == 0 && p.frac[i] == 0; i++) |
561 | ; |
562 | |
563 | /* Determine number of bits the scaling factor is misplaced. */ |
564 | count_leading_zeros (cnt_h, p.scale[p.scalesize - 1]); |
565 | |
566 | if (cnt_h == 0) |
567 | { |
568 | /* The highest bit of the scaling factor is already set. So |
569 | we only have to remove the trailing empty limbs. */ |
570 | if (i > 0) |
571 | { |
572 | MPN_COPY_INCR (p.scale, p.scale + i, p.scalesize - i); |
573 | p.scalesize -= i; |
574 | MPN_COPY_INCR (p.frac, p.frac + i, p.fracsize - i); |
575 | p.fracsize -= i; |
576 | } |
577 | } |
578 | else |
579 | { |
580 | if (p.scale[i] != 0) |
581 | { |
582 | count_trailing_zeros (cnt_l, p.scale[i]); |
583 | if (p.frac[i] != 0) |
584 | { |
585 | int cnt_l2; |
586 | count_trailing_zeros (cnt_l2, p.frac[i]); |
587 | if (cnt_l2 < cnt_l) |
588 | cnt_l = cnt_l2; |
589 | } |
590 | } |
591 | else |
592 | count_trailing_zeros (cnt_l, p.frac[i]); |
593 | |
594 | /* Now shift the numbers to their optimal position. */ |
595 | if (i == 0 && BITS_PER_MP_LIMB - cnt_h > cnt_l) |
596 | { |
597 | /* We cannot save any memory. So just roll both numbers |
598 | so that the scaling factor has its highest bit set. */ |
599 | |
600 | (void) __mpn_lshift (p.scale, p.scale, p.scalesize, cnt_h); |
601 | cy = __mpn_lshift (p.frac, p.frac, p.fracsize, cnt_h); |
602 | if (cy != 0) |
603 | p.frac[p.fracsize++] = cy; |
604 | } |
605 | else if (BITS_PER_MP_LIMB - cnt_h <= cnt_l) |
606 | { |
607 | /* We can save memory by removing the trailing zero limbs |
608 | and by packing the non-zero limbs which gain another |
609 | free one. */ |
610 | |
611 | (void) __mpn_rshift (p.scale, p.scale + i, p.scalesize - i, |
612 | BITS_PER_MP_LIMB - cnt_h); |
613 | p.scalesize -= i + 1; |
614 | (void) __mpn_rshift (p.frac, p.frac + i, p.fracsize - i, |
615 | BITS_PER_MP_LIMB - cnt_h); |
616 | p.fracsize -= p.frac[p.fracsize - i - 1] == 0 ? i + 1 : i; |
617 | } |
618 | else |
619 | { |
620 | /* We can only save the memory of the limbs which are zero. |
621 | The non-zero parts occupy the same number of limbs. */ |
622 | |
623 | (void) __mpn_rshift (p.scale, p.scale + (i - 1), |
624 | p.scalesize - (i - 1), |
625 | BITS_PER_MP_LIMB - cnt_h); |
626 | p.scalesize -= i; |
627 | (void) __mpn_rshift (p.frac, p.frac + (i - 1), |
628 | p.fracsize - (i - 1), |
629 | BITS_PER_MP_LIMB - cnt_h); |
630 | p.fracsize -= |
631 | p.frac[p.fracsize - (i - 1) - 1] == 0 ? i : i - 1; |
632 | } |
633 | } |
634 | } |
635 | } |
636 | else if (p.exponent < 0) |
637 | { |
638 | /* |FP| < 1.0. */ |
639 | int exp10 = 0; |
640 | int explog = LDBL_MAX_10_EXP_LOG; |
641 | const struct mp_power *powers = &_fpioconst_pow10[explog + 1]; |
642 | |
643 | /* Now shift the input value to its right place. */ |
644 | cy = __mpn_lshift (p.frac, fp_input, p.fracsize, to_shift); |
645 | p.frac[p.fracsize++] = cy; |
646 | assert (cy == 1 || (p.frac[p.fracsize - 2] == 0 && p.frac[0] == 0)); |
647 | |
648 | p.expsign = 1; |
649 | p.exponent = -p.exponent; |
650 | |
651 | assert (powers != &_fpioconst_pow10[0]); |
652 | do |
653 | { |
654 | --powers; |
655 | |
656 | if (p.exponent >= powers->m_expo) |
657 | { |
658 | int i, incr, cnt_h, cnt_l; |
659 | mp_limb_t topval[2]; |
660 | |
661 | /* The __mpn_mul function expects the first argument to be |
662 | bigger than the second. */ |
663 | if (p.fracsize < powers->arraysize - _FPIO_CONST_OFFSET) |
664 | cy = __mpn_mul (p.tmp, &__tens[powers->arrayoff |
665 | + _FPIO_CONST_OFFSET], |
666 | powers->arraysize - _FPIO_CONST_OFFSET, |
667 | p.frac, p.fracsize); |
668 | else |
669 | cy = __mpn_mul (p.tmp, p.frac, p.fracsize, |
670 | &__tens[powers->arrayoff + _FPIO_CONST_OFFSET], |
671 | powers->arraysize - _FPIO_CONST_OFFSET); |
672 | p.tmpsize = p.fracsize + powers->arraysize - _FPIO_CONST_OFFSET; |
673 | if (cy == 0) |
674 | --p.tmpsize; |
675 | |
676 | count_leading_zeros (cnt_h, p.tmp[p.tmpsize - 1]); |
677 | incr = (p.tmpsize - p.fracsize) * BITS_PER_MP_LIMB |
678 | + BITS_PER_MP_LIMB - 1 - cnt_h; |
679 | |
680 | assert (incr <= powers->p_expo); |
681 | |
682 | /* If we increased the p.exponent by exactly 3 we have to test |
683 | for overflow. This is done by comparing with 10 shifted |
684 | to the right position. */ |
685 | if (incr == p.exponent + 3) |
686 | { |
687 | if (cnt_h <= BITS_PER_MP_LIMB - 4) |
688 | { |
689 | topval[0] = 0; |
690 | topval[1] |
691 | = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4 - cnt_h); |
692 | } |
693 | else |
694 | { |
695 | topval[0] = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4); |
696 | topval[1] = 0; |
697 | (void) __mpn_lshift (topval, topval, 2, |
698 | BITS_PER_MP_LIMB - cnt_h); |
699 | } |
700 | } |
701 | |
702 | /* We have to be careful when multiplying the last factor. |
703 | If the result is greater than 1.0 be have to test it |
704 | against 10.0. If it is greater or equal to 10.0 the |
705 | multiplication was not valid. This is because we cannot |
706 | determine the number of bits in the result in advance. */ |
707 | if (incr < p.exponent + 3 |
708 | || (incr == p.exponent + 3 && |
709 | (p.tmp[p.tmpsize - 1] < topval[1] |
710 | || (p.tmp[p.tmpsize - 1] == topval[1] |
711 | && p.tmp[p.tmpsize - 2] < topval[0])))) |
712 | { |
713 | /* The factor is right. Adapt binary and decimal |
714 | exponents. */ |
715 | p.exponent -= incr; |
716 | exp10 |= 1 << explog; |
717 | |
718 | /* If this factor yields a number greater or equal to |
719 | 1.0, we must not shift the non-fractional digits down. */ |
720 | if (p.exponent < 0) |
721 | cnt_h += -p.exponent; |
722 | |
723 | /* Now we optimize the number representation. */ |
724 | for (i = 0; p.tmp[i] == 0; ++i); |
725 | if (cnt_h == BITS_PER_MP_LIMB - 1) |
726 | { |
727 | MPN_COPY (p.frac, p.tmp + i, p.tmpsize - i); |
728 | p.fracsize = p.tmpsize - i; |
729 | } |
730 | else |
731 | { |
732 | count_trailing_zeros (cnt_l, p.tmp[i]); |
733 | |
734 | /* Now shift the numbers to their optimal position. */ |
735 | if (i == 0 && BITS_PER_MP_LIMB - 1 - cnt_h > cnt_l) |
736 | { |
737 | /* We cannot save any memory. Just roll the |
738 | number so that the leading digit is in a |
739 | separate limb. */ |
740 | |
741 | cy = __mpn_lshift (p.frac, p.tmp, p.tmpsize, |
742 | cnt_h + 1); |
743 | p.fracsize = p.tmpsize + 1; |
744 | p.frac[p.fracsize - 1] = cy; |
745 | } |
746 | else if (BITS_PER_MP_LIMB - 1 - cnt_h <= cnt_l) |
747 | { |
748 | (void) __mpn_rshift (p.frac, p.tmp + i, p.tmpsize - i, |
749 | BITS_PER_MP_LIMB - 1 - cnt_h); |
750 | p.fracsize = p.tmpsize - i; |
751 | } |
752 | else |
753 | { |
754 | /* We can only save the memory of the limbs which |
755 | are zero. The non-zero parts occupy the same |
756 | number of limbs. */ |
757 | |
758 | (void) __mpn_rshift (p.frac, p.tmp + (i - 1), |
759 | p.tmpsize - (i - 1), |
760 | BITS_PER_MP_LIMB - 1 - cnt_h); |
761 | p.fracsize = p.tmpsize - (i - 1); |
762 | } |
763 | } |
764 | } |
765 | } |
766 | --explog; |
767 | } |
768 | while (powers != &_fpioconst_pow10[1] && p.exponent > 0); |
769 | /* All factors but 10^-1 are tested now. */ |
770 | if (p.exponent > 0) |
771 | { |
772 | int cnt_l; |
773 | |
774 | cy = __mpn_mul_1 (p.tmp, p.frac, p.fracsize, 10); |
775 | p.tmpsize = p.fracsize; |
776 | assert (cy == 0 || p.tmp[p.tmpsize - 1] < 20); |
777 | |
778 | count_trailing_zeros (cnt_l, p.tmp[0]); |
779 | if (cnt_l < MIN (4, p.exponent)) |
780 | { |
781 | cy = __mpn_lshift (p.frac, p.tmp, p.tmpsize, |
782 | BITS_PER_MP_LIMB - MIN (4, p.exponent)); |
783 | if (cy != 0) |
784 | p.frac[p.tmpsize++] = cy; |
785 | } |
786 | else |
787 | (void) __mpn_rshift (p.frac, p.tmp, p.tmpsize, MIN (4, p.exponent)); |
788 | p.fracsize = p.tmpsize; |
789 | exp10 |= 1; |
790 | assert (p.frac[p.fracsize - 1] < 10); |
791 | } |
792 | p.exponent = exp10; |
793 | } |
794 | else |
795 | { |
796 | /* This is a special case. We don't need a factor because the |
797 | numbers are in the range of 1.0 <= |fp| < 8.0. We simply |
798 | shift it to the right place and divide it by 1.0 to get the |
799 | leading digit. (Of course this division is not really made.) */ |
800 | assert (0 <= p.exponent && p.exponent < 3 && |
801 | p.exponent + to_shift < BITS_PER_MP_LIMB); |
802 | |
803 | /* Now shift the input value to its right place. */ |
804 | cy = __mpn_lshift (p.frac, fp_input, p.fracsize, (p.exponent + to_shift)); |
805 | p.frac[p.fracsize++] = cy; |
806 | p.exponent = 0; |
807 | } |
808 | |
809 | { |
810 | int width = info->width; |
811 | wchar_t *wstartp, *wcp; |
812 | size_t chars_needed; |
813 | int expscale; |
814 | int intdig_max, intdig_no = 0; |
815 | int fracdig_min; |
816 | int fracdig_max; |
817 | int dig_max; |
818 | int significant; |
819 | int ngroups = 0; |
820 | char spec = _tolower (info->spec); |
821 | |
822 | if (spec == 'e') |
823 | { |
824 | p.type = info->spec; |
825 | intdig_max = 1; |
826 | fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec; |
827 | chars_needed = 1 + 1 + (size_t) fracdig_max + 1 + 1 + 4; |
828 | /* d . ddd e +- ddd */ |
829 | dig_max = INT_MAX; /* Unlimited. */ |
830 | significant = 1; /* Does not matter here. */ |
831 | } |
832 | else if (spec == 'f') |
833 | { |
834 | p.type = 'f'; |
835 | fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec; |
836 | dig_max = INT_MAX; /* Unlimited. */ |
837 | significant = 1; /* Does not matter here. */ |
838 | if (p.expsign == 0) |
839 | { |
840 | intdig_max = p.exponent + 1; |
841 | /* This can be really big! */ /* XXX Maybe malloc if too big? */ |
842 | chars_needed = (size_t) p.exponent + 1 + 1 + (size_t) fracdig_max; |
843 | } |
844 | else |
845 | { |
846 | intdig_max = 1; |
847 | chars_needed = 1 + 1 + (size_t) fracdig_max; |
848 | } |
849 | } |
850 | else |
851 | { |
852 | dig_max = info->prec < 0 ? 6 : (info->prec == 0 ? 1 : info->prec); |
853 | if ((p.expsign == 0 && p.exponent >= dig_max) |
854 | || (p.expsign != 0 && p.exponent > 4)) |
855 | { |
856 | if ('g' - 'G' == 'e' - 'E') |
857 | p.type = 'E' + (info->spec - 'G'); |
858 | else |
859 | p.type = isupper (info->spec) ? 'E' : 'e'; |
860 | fracdig_max = dig_max - 1; |
861 | intdig_max = 1; |
862 | chars_needed = 1 + 1 + (size_t) fracdig_max + 1 + 1 + 4; |
863 | } |
864 | else |
865 | { |
866 | p.type = 'f'; |
867 | intdig_max = p.expsign == 0 ? p.exponent + 1 : 0; |
868 | fracdig_max = dig_max - intdig_max; |
869 | /* We need space for the significant digits and perhaps |
870 | for leading zeros when < 1.0. The number of leading |
871 | zeros can be as many as would be required for |
872 | exponential notation with a negative two-digit |
873 | p.exponent, which is 4. */ |
874 | chars_needed = (size_t) dig_max + 1 + 4; |
875 | } |
876 | fracdig_min = info->alt ? fracdig_max : 0; |
877 | significant = 0; /* We count significant digits. */ |
878 | } |
879 | |
880 | if (grouping) |
881 | { |
882 | /* Guess the number of groups we will make, and thus how |
883 | many spaces we need for separator characters. */ |
884 | ngroups = __guess_grouping (intdig_max, grouping); |
885 | /* Allocate one more character in case rounding increases the |
886 | number of groups. */ |
887 | chars_needed += ngroups + 1; |
888 | } |
889 | |
890 | /* Allocate buffer for output. We need two more because while rounding |
891 | it is possible that we need two more characters in front of all the |
892 | other output. If the amount of memory we have to allocate is too |
893 | large use `malloc' instead of `alloca'. */ |
894 | if (__builtin_expect (chars_needed >= (size_t) -1 / sizeof (wchar_t) - 2 |
895 | || chars_needed < fracdig_max, 0)) |
896 | { |
897 | /* Some overflow occurred. */ |
898 | __set_errno (ERANGE); |
899 | return -1; |
900 | } |
901 | size_t wbuffer_to_alloc = (2 + chars_needed) * sizeof (wchar_t); |
902 | buffer_malloced = ! __libc_use_alloca (wbuffer_to_alloc); |
903 | if (__builtin_expect (buffer_malloced, 0)) |
904 | { |
905 | wbuffer = (wchar_t *) malloc (wbuffer_to_alloc); |
906 | if (wbuffer == NULL) |
907 | /* Signal an error to the caller. */ |
908 | return -1; |
909 | } |
910 | else |
911 | wbuffer = (wchar_t *) alloca (wbuffer_to_alloc); |
912 | wcp = wstartp = wbuffer + 2; /* Let room for rounding. */ |
913 | |
914 | /* Do the real work: put digits in allocated buffer. */ |
915 | if (p.expsign == 0 || p.type != 'f') |
916 | { |
917 | assert (p.expsign == 0 || intdig_max == 1); |
918 | while (intdig_no < intdig_max) |
919 | { |
920 | ++intdig_no; |
921 | *wcp++ = hack_digit (&p); |
922 | } |
923 | significant = 1; |
924 | if (info->alt |
925 | || fracdig_min > 0 |
926 | || (fracdig_max > 0 && (p.fracsize > 1 || p.frac[0] != 0))) |
927 | *wcp++ = decimalwc; |
928 | } |
929 | else |
930 | { |
931 | /* |fp| < 1.0 and the selected p.type is 'f', so put "0." |
932 | in the buffer. */ |
933 | *wcp++ = L'0'; |
934 | --p.exponent; |
935 | *wcp++ = decimalwc; |
936 | } |
937 | |
938 | /* Generate the needed number of fractional digits. */ |
939 | int fracdig_no = 0; |
940 | int added_zeros = 0; |
941 | while (fracdig_no < fracdig_min + added_zeros |
942 | || (fracdig_no < fracdig_max && (p.fracsize > 1 || p.frac[0] != 0))) |
943 | { |
944 | ++fracdig_no; |
945 | *wcp = hack_digit (&p); |
946 | if (*wcp++ != L'0') |
947 | significant = 1; |
948 | else if (significant == 0) |
949 | { |
950 | ++fracdig_max; |
951 | if (fracdig_min > 0) |
952 | ++added_zeros; |
953 | } |
954 | } |
955 | |
956 | /* Do rounding. */ |
957 | wchar_t last_digit = wcp[-1] != decimalwc ? wcp[-1] : wcp[-2]; |
958 | wchar_t next_digit = hack_digit (&p); |
959 | bool more_bits; |
960 | if (next_digit != L'0' && next_digit != L'5') |
961 | more_bits = true; |
962 | else if (p.fracsize == 1 && p.frac[0] == 0) |
963 | /* Rest of the number is zero. */ |
964 | more_bits = false; |
965 | else if (p.scalesize == 0) |
966 | { |
967 | /* Here we have to see whether all limbs are zero since no |
968 | normalization happened. */ |
969 | size_t lcnt = p.fracsize; |
970 | while (lcnt >= 1 && p.frac[lcnt - 1] == 0) |
971 | --lcnt; |
972 | more_bits = lcnt > 0; |
973 | } |
974 | else |
975 | more_bits = true; |
976 | int rounding_mode = get_rounding_mode (); |
977 | if (round_away (is_neg, (last_digit - L'0') & 1, next_digit >= L'5', |
978 | more_bits, rounding_mode)) |
979 | { |
980 | wchar_t *wtp = wcp; |
981 | |
982 | if (fracdig_no > 0) |
983 | { |
984 | /* Process fractional digits. Terminate if not rounded or |
985 | radix character is reached. */ |
986 | int removed = 0; |
987 | while (*--wtp != decimalwc && *wtp == L'9') |
988 | { |
989 | *wtp = L'0'; |
990 | ++removed; |
991 | } |
992 | if (removed == fracdig_min && added_zeros > 0) |
993 | --added_zeros; |
994 | if (*wtp != decimalwc) |
995 | /* Round up. */ |
996 | (*wtp)++; |
997 | else if (__builtin_expect (spec == 'g' && p.type == 'f' && info->alt |
998 | && wtp == wstartp + 1 |
999 | && wstartp[0] == L'0', |
1000 | 0)) |
1001 | /* This is a special case: the rounded number is 1.0, |
1002 | the format is 'g' or 'G', and the alternative format |
1003 | is selected. This means the result must be "1.". */ |
1004 | --added_zeros; |
1005 | } |
1006 | |
1007 | if (fracdig_no == 0 || *wtp == decimalwc) |
1008 | { |
1009 | /* Round the integer digits. */ |
1010 | if (*(wtp - 1) == decimalwc) |
1011 | --wtp; |
1012 | |
1013 | while (--wtp >= wstartp && *wtp == L'9') |
1014 | *wtp = L'0'; |
1015 | |
1016 | if (wtp >= wstartp) |
1017 | /* Round up. */ |
1018 | (*wtp)++; |
1019 | else |
1020 | /* It is more critical. All digits were 9's. */ |
1021 | { |
1022 | if (p.type != 'f') |
1023 | { |
1024 | *wstartp = '1'; |
1025 | p.exponent += p.expsign == 0 ? 1 : -1; |
1026 | |
1027 | /* The above p.exponent adjustment could lead to 1.0e-00, |
1028 | e.g. for 0.999999999. Make sure p.exponent 0 always |
1029 | uses + sign. */ |
1030 | if (p.exponent == 0) |
1031 | p.expsign = 0; |
1032 | } |
1033 | else if (intdig_no == dig_max) |
1034 | { |
1035 | /* This is the case where for p.type %g the number fits |
1036 | really in the range for %f output but after rounding |
1037 | the number of digits is too big. */ |
1038 | *--wstartp = decimalwc; |
1039 | *--wstartp = L'1'; |
1040 | |
1041 | if (info->alt || fracdig_no > 0) |
1042 | { |
1043 | /* Overwrite the old radix character. */ |
1044 | wstartp[intdig_no + 2] = L'0'; |
1045 | ++fracdig_no; |
1046 | } |
1047 | |
1048 | fracdig_no += intdig_no; |
1049 | intdig_no = 1; |
1050 | fracdig_max = intdig_max - intdig_no; |
1051 | ++p.exponent; |
1052 | /* Now we must print the p.exponent. */ |
1053 | p.type = isupper (info->spec) ? 'E' : 'e'; |
1054 | } |
1055 | else |
1056 | { |
1057 | /* We can simply add another another digit before the |
1058 | radix. */ |
1059 | *--wstartp = L'1'; |
1060 | ++intdig_no; |
1061 | } |
1062 | |
1063 | /* While rounding the number of digits can change. |
1064 | If the number now exceeds the limits remove some |
1065 | fractional digits. */ |
1066 | if (intdig_no + fracdig_no > dig_max) |
1067 | { |
1068 | wcp -= intdig_no + fracdig_no - dig_max; |
1069 | fracdig_no -= intdig_no + fracdig_no - dig_max; |
1070 | } |
1071 | } |
1072 | } |
1073 | } |
1074 | |
1075 | /* Now remove unnecessary '0' at the end of the string. */ |
1076 | while (fracdig_no > fracdig_min + added_zeros && *(wcp - 1) == L'0') |
1077 | { |
1078 | --wcp; |
1079 | --fracdig_no; |
1080 | } |
1081 | /* If we eliminate all fractional digits we perhaps also can remove |
1082 | the radix character. */ |
1083 | if (fracdig_no == 0 && !info->alt && *(wcp - 1) == decimalwc) |
1084 | --wcp; |
1085 | |
1086 | if (grouping) |
1087 | { |
1088 | /* Rounding might have changed the number of groups. We allocated |
1089 | enough memory but we need here the correct number of groups. */ |
1090 | if (intdig_no != intdig_max) |
1091 | ngroups = __guess_grouping (intdig_no, grouping); |
1092 | |
1093 | /* Add in separator characters, overwriting the same buffer. */ |
1094 | wcp = group_number (wstartp, wcp, intdig_no, grouping, thousands_sepwc, |
1095 | ngroups); |
1096 | } |
1097 | |
1098 | /* Write the p.exponent if it is needed. */ |
1099 | if (p.type != 'f') |
1100 | { |
1101 | if (__glibc_unlikely (p.expsign != 0 && p.exponent == 4 && spec == 'g')) |
1102 | { |
1103 | /* This is another special case. The p.exponent of the number is |
1104 | really smaller than -4, which requires the 'e'/'E' format. |
1105 | But after rounding the number has an p.exponent of -4. */ |
1106 | assert (wcp >= wstartp + 1); |
1107 | assert (wstartp[0] == L'1'); |
1108 | __wmemcpy (wstartp, L"0.0001" , 6); |
1109 | wstartp[1] = decimalwc; |
1110 | if (wcp >= wstartp + 2) |
1111 | { |
1112 | __wmemset (wstartp + 6, L'0', wcp - (wstartp + 2)); |
1113 | wcp += 4; |
1114 | } |
1115 | else |
1116 | wcp += 5; |
1117 | } |
1118 | else |
1119 | { |
1120 | *wcp++ = (wchar_t) p.type; |
1121 | *wcp++ = p.expsign ? L'-' : L'+'; |
1122 | |
1123 | /* Find the magnitude of the p.exponent. */ |
1124 | expscale = 10; |
1125 | while (expscale <= p.exponent) |
1126 | expscale *= 10; |
1127 | |
1128 | if (p.exponent < 10) |
1129 | /* Exponent always has at least two digits. */ |
1130 | *wcp++ = L'0'; |
1131 | else |
1132 | do |
1133 | { |
1134 | expscale /= 10; |
1135 | *wcp++ = L'0' + (p.exponent / expscale); |
1136 | p.exponent %= expscale; |
1137 | } |
1138 | while (expscale > 10); |
1139 | *wcp++ = L'0' + p.exponent; |
1140 | } |
1141 | } |
1142 | |
1143 | /* Compute number of characters which must be filled with the padding |
1144 | character. */ |
1145 | if (is_neg || info->showsign || info->space) |
1146 | --width; |
1147 | width -= wcp - wstartp; |
1148 | |
1149 | if (!info->left && info->pad != '0' && width > 0) |
1150 | PADN (info->pad, width); |
1151 | |
1152 | if (is_neg) |
1153 | outchar ('-'); |
1154 | else if (info->showsign) |
1155 | outchar ('+'); |
1156 | else if (info->space) |
1157 | outchar (' '); |
1158 | |
1159 | if (!info->left && info->pad == '0' && width > 0) |
1160 | PADN ('0', width); |
1161 | |
1162 | { |
1163 | char *buffer = NULL; |
1164 | char *buffer_end = NULL; |
1165 | char *cp = NULL; |
1166 | char *tmpptr; |
1167 | |
1168 | if (! wide) |
1169 | { |
1170 | /* Create the single byte string. */ |
1171 | size_t decimal_len; |
1172 | size_t thousands_sep_len; |
1173 | wchar_t *copywc; |
1174 | size_t factor = (info->i18n |
1175 | ? _NL_CURRENT_WORD (LC_CTYPE, _NL_CTYPE_MB_CUR_MAX) |
1176 | : 1); |
1177 | |
1178 | decimal_len = strlen (decimal); |
1179 | |
1180 | if (thousands_sep == NULL) |
1181 | thousands_sep_len = 0; |
1182 | else |
1183 | thousands_sep_len = strlen (thousands_sep); |
1184 | |
1185 | size_t nbuffer = (2 + chars_needed * factor + decimal_len |
1186 | + ngroups * thousands_sep_len); |
1187 | if (__glibc_unlikely (buffer_malloced)) |
1188 | { |
1189 | buffer = (char *) malloc (nbuffer); |
1190 | if (buffer == NULL) |
1191 | { |
1192 | /* Signal an error to the caller. */ |
1193 | free (wbuffer); |
1194 | return -1; |
1195 | } |
1196 | } |
1197 | else |
1198 | buffer = (char *) alloca (nbuffer); |
1199 | buffer_end = buffer + nbuffer; |
1200 | |
1201 | /* Now copy the wide character string. Since the character |
1202 | (except for the decimal point and thousands separator) must |
1203 | be coming from the ASCII range we can esily convert the |
1204 | string without mapping tables. */ |
1205 | for (cp = buffer, copywc = wstartp; copywc < wcp; ++copywc) |
1206 | if (*copywc == decimalwc) |
1207 | cp = (char *) __mempcpy (cp, decimal, decimal_len); |
1208 | else if (*copywc == thousands_sepwc) |
1209 | cp = (char *) __mempcpy (cp, thousands_sep, thousands_sep_len); |
1210 | else |
1211 | *cp++ = (char) *copywc; |
1212 | } |
1213 | |
1214 | tmpptr = buffer; |
1215 | if (__glibc_unlikely (info->i18n)) |
1216 | { |
1217 | #ifdef COMPILE_WPRINTF |
1218 | wstartp = _i18n_number_rewrite (wstartp, wcp, |
1219 | wbuffer + wbuffer_to_alloc); |
1220 | wcp = wbuffer + wbuffer_to_alloc; |
1221 | assert ((uintptr_t) wbuffer <= (uintptr_t) wstartp); |
1222 | assert ((uintptr_t) wstartp |
1223 | < (uintptr_t) wbuffer + wbuffer_to_alloc); |
1224 | #else |
1225 | tmpptr = _i18n_number_rewrite (tmpptr, cp, buffer_end); |
1226 | cp = buffer_end; |
1227 | assert ((uintptr_t) buffer <= (uintptr_t) tmpptr); |
1228 | assert ((uintptr_t) tmpptr < (uintptr_t) buffer_end); |
1229 | #endif |
1230 | } |
1231 | |
1232 | PRINT (tmpptr, wstartp, wide ? wcp - wstartp : cp - tmpptr); |
1233 | |
1234 | /* Free the memory if necessary. */ |
1235 | if (__glibc_unlikely (buffer_malloced)) |
1236 | { |
1237 | free (buffer); |
1238 | free (wbuffer); |
1239 | } |
1240 | } |
1241 | |
1242 | if (info->left && width > 0) |
1243 | PADN (info->pad, width); |
1244 | } |
1245 | return done; |
1246 | } |
1247 | ldbl_hidden_def (___printf_fp, __printf_fp) |
1248 | ldbl_strong_alias (___printf_fp, __printf_fp) |
1249 | |
1250 | /* Return the number of extra grouping characters that will be inserted |
1251 | into a number with INTDIG_MAX integer digits. */ |
1252 | |
1253 | unsigned int |
1254 | __guess_grouping (unsigned int intdig_max, const char *grouping) |
1255 | { |
1256 | unsigned int groups; |
1257 | |
1258 | /* We treat all negative values like CHAR_MAX. */ |
1259 | |
1260 | if (*grouping == CHAR_MAX || *grouping <= 0) |
1261 | /* No grouping should be done. */ |
1262 | return 0; |
1263 | |
1264 | groups = 0; |
1265 | while (intdig_max > (unsigned int) *grouping) |
1266 | { |
1267 | ++groups; |
1268 | intdig_max -= *grouping++; |
1269 | |
1270 | if (*grouping == CHAR_MAX |
1271 | #if CHAR_MIN < 0 |
1272 | || *grouping < 0 |
1273 | #endif |
1274 | ) |
1275 | /* No more grouping should be done. */ |
1276 | break; |
1277 | else if (*grouping == 0) |
1278 | { |
1279 | /* Same grouping repeats. */ |
1280 | groups += (intdig_max - 1) / grouping[-1]; |
1281 | break; |
1282 | } |
1283 | } |
1284 | |
1285 | return groups; |
1286 | } |
1287 | |
1288 | /* Group the INTDIG_NO integer digits of the number in [BUF,BUFEND). |
1289 | There is guaranteed enough space past BUFEND to extend it. |
1290 | Return the new end of buffer. */ |
1291 | |
1292 | static wchar_t * |
1293 | internal_function |
1294 | group_number (wchar_t *buf, wchar_t *bufend, unsigned int intdig_no, |
1295 | const char *grouping, wchar_t thousands_sep, int ngroups) |
1296 | { |
1297 | wchar_t *p; |
1298 | |
1299 | if (ngroups == 0) |
1300 | return bufend; |
1301 | |
1302 | /* Move the fractional part down. */ |
1303 | __wmemmove (buf + intdig_no + ngroups, buf + intdig_no, |
1304 | bufend - (buf + intdig_no)); |
1305 | |
1306 | p = buf + intdig_no + ngroups - 1; |
1307 | do |
1308 | { |
1309 | unsigned int len = *grouping++; |
1310 | do |
1311 | *p-- = buf[--intdig_no]; |
1312 | while (--len > 0); |
1313 | *p-- = thousands_sep; |
1314 | |
1315 | if (*grouping == CHAR_MAX |
1316 | #if CHAR_MIN < 0 |
1317 | || *grouping < 0 |
1318 | #endif |
1319 | ) |
1320 | /* No more grouping should be done. */ |
1321 | break; |
1322 | else if (*grouping == 0) |
1323 | /* Same grouping repeats. */ |
1324 | --grouping; |
1325 | } while (intdig_no > (unsigned int) *grouping); |
1326 | |
1327 | /* Copy the remaining ungrouped digits. */ |
1328 | do |
1329 | *p-- = buf[--intdig_no]; |
1330 | while (p > buf); |
1331 | |
1332 | return bufend + ngroups; |
1333 | } |
1334 | |